Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Modelo de RM con IA clasifica los tumores intracraneales comunes

Por el equipo editorial de HospiMedica en español
Actualizado el 15 Sep 2021
Print article
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Un estudio nuevo afirma que un modelo 3D de inteligencia artificial (IA) es capaz de clasificar un tumor cerebral como uno de los seis tipos comunes a partir de un solo examen de resonancia magnética (RM).

Para desarrollar el algoritmo GradCAM, investigadores de la Universidad de Washington (WUSTL; St. Louis, MO, EUA), utilizaron 2.105 exámenes de resonancia magnética ponderadas en T1 de cuatro conjuntos de datos disponibles públicamente, divididos en capacitación (1.396), interna (361) y conjuntos de datos externos (348). Se entrenó una red neuronal convolucional (CNN) para discriminar entre exámenes sanos y aquellos con tumores, clasificados por tipo (glioma de alto grado, glioma de bajo grado, metástasis cerebrales, meningioma, adenoma hipofisario y neuroma acústico). A continuación, se evaluó el desempeño del modelo y se trazaron mapas de características para visualizar la atención de la red.

Los resultados de las pruebas internas mostraron que GradCAM logró una exactitud del 93,35% en siete clases de imágenes (una clase saludable y seis clases de tumores). Las sensibilidades variaron del 91% al 100% y el valor predictivo positivo (VPP) varió del 85% al 100%. El valor predictivo negativo (VPN) osciló entre el 98% y el 100% en todas las clases. La atención de la red se superpuso con las áreas tumorales para todos los tipos de tumores. Para el conjunto de datos de la prueba externa, que incluyó solo dos tipos de tumores (glioma de alto grado y glioma de bajo grado), GradCAM tuvo una exactitud del 91,95%. El estudio fue publicado el 11 de agosto de 2021 en la revista Radiology: Artificial Intelligence.

“Estos resultados sugieren que el aprendizaje profundo es un método prometedor para la clasificación y evaluación automatizadas de tumores cerebrales. El modelo logró una alta exactitud en un conjunto de datos heterogéneo y mostró excelentes capacidades de generalización en datos de prueba invisibles”, dijo el autor principal, Satrajit Chakrabarty, MSc, del departamento de ingeniería eléctrica y de sistemas. “Esta red es el primer paso hacia el desarrollo de un flujo de trabajo de radiología aumentado con inteligencia artificial que puede respaldar la interpretación de imágenes al proporcionar información cuantitativa y estadísticas”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de CNN que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Washington

Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
X-Ray System
Leonardo DR mini III
Imaging Table
Stille imagiQ2

Print article

Canales

Cuidados Criticos

ver canal
Imagen: Los dispositivos electrónicos portátiles permeables desarrollados para el monitoreo de bioseñales a largo plazo (Fotografía cortesía de CityUHK)

Dispositivo electrónico portátil súper permeable permite monitorear bioseñales a largo plazo

Los dispositivos electrónicos portátiles se han convertido en una parte integral de la mejora de la salud y el estado físico al ofrecer un seguimiento continuo de señales f... Más

Técnicas Quirúrgicas

ver canal
Imagen: La rodilla de reemplazo viva se probará en ensayos clínicos dentro de cinco años (Fotografía cortesía de ARPA-H)

Reemplazo vivo de rodilla podría revolucionar tratamiento de osteoartritis

La osteoartritis es la forma de artritis más frecuente, caracterizada por el deterioro progresivo del cartílago o el tejido protector que cubre los extremos de los huesos, lo que provoca... Más

Cuidados de Pacientes

ver canal
Imagen: La solución recientemente lanzada puede transformar la programación del quirófano e impulsar las tasas de utilización  (Fotografía cortesía de Fujitsu)

Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos

Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.