Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Nuevo sistema robótico evalúa la movilidad después de un accidente cerebrovascular

Por el equipo editorial de HospiMedica en español
Actualizado el 04 Dec 2023
Print article
Imagen: El brazo robótico proporciona información espacial 3D precisa para ayudar a los sobrevivientes de accidente cerebrovascular (Fotografía cortesía de USC Viterbi)
Imagen: El brazo robótico proporciona información espacial 3D precisa para ayudar a los sobrevivientes de accidente cerebrovascular (Fotografía cortesía de USC Viterbi)

En todo el mundo, los accidentes cerebrovasculares afectan a más de 15 millones de personas anualmente, dejando a tres cuartas partes de los supervivientes con limitaciones en brazos y manos, incluidas debilidad y parálisis. Superar la tendencia a subutilizar el brazo afectado, un fenómeno conocido como "no uso del brazo" o "no uso aprendido", es crucial para la rehabilitación, pero evaluar el uso del brazo fuera de los entornos clínicos plantea un desafío importante. La observación del comportamiento natural a menudo requiere métodos de monitorización discretos. Para abordar esta necesidad, los investigadores ahora han diseñado un sistema robótico innovador que recopila datos precisos sobre cómo los supervivientes de un accidente cerebrovascular utilizan espontáneamente sus brazos.

Desarrollado por un equipo de la USC Viterbi en Los Ángeles, California, EUA, este enfoque de vanguardia emplea un brazo robótico para recopilar datos espaciales en 3D sobre los movimientos del brazo. El sistema utiliza algoritmos de aprendizaje automático para analizar estos datos, lo que produce una métrica confiable de "no uso del brazo" que puede ayudar enormemente a los médicos a evaluar el progreso de la rehabilitación. Para que la experiencia sea atractiva y de apoyo, un robot de asistencia social (SAR) ofrece instrucciones y estímulo durante todo el proceso. En su estudio, el equipo de USC Viterbi trabajó con 14 participantes que habían sido de mano derecha dominante antes de sufrir un accidente cerebrovascular. Los participantes comenzaron colocando sus manos sobre una caja impresa en 3D equipada con sensores táctiles, que sirvió como posición inicial del sistema. El SAR presentó la funcionalidad del sistema y proporcionó comentarios positivos. Luego, el brazo robótico movería un botón a varias ubicaciones predeterminadas, iniciando la "prueba de alcance" cuando el botón se iluminaba y se le indicaba al participante que se moviera.

La prueba constaba de dos fases: en la primera, los participantes utilizaban su mano preferida naturalmente, imitando las actividades diarias típicas. En la segunda fase, se les indicó que usaran el brazo afectado por el accidente cerebrovascular, de forma similar a los ejercicios realizados en terapia o en entornos clínicos. El análisis de aprendizaje automático del equipo se centró en tres métricas clave: la probabilidad de uso del brazo, el tiempo necesario para alcanzar el objetivo y la finalización exitosa del alcance. El estudio reveló diferencias significativas en la preferencia de manos y el tiempo necesario para alcanzar los objetivos entre los supervivientes de un accidente cerebrovascular crónico. El método demostró ser confiable durante múltiples sesiones, y los participantes lo encontraron fácil de usar y le dieron una puntuación alta en términos de experiencia de usuario.

Además, todos los participantes consideraron segura la interacción. El equipo recibió comentarios que sugerían que futuras mejoras podrían incluir funciones personalizadas, la integración de datos de comportamiento adicionales y la variación de las tareas. Este método innovador no solo demostró coherencia y experiencias positivas de los usuarios, sino que también destacó las variaciones en el uso del brazo entre los participantes. Estos conocimientos son vitales para que los profesionales de la salud monitoreen con mayor precisión y faciliten la recuperación del accidente cerebrovascular.

"Este trabajo reúne datos cuantitativos sobre el rendimiento del usuario recopilados utilizando un brazo robótico, al tiempo que motiva al usuario a proporcionar un rendimiento representativo gracias a un robot de asistencia social", dijo Maja Matarić, coautora del estudio y presidenta y catedrática distinguida de Informática, Neurociencia y Pediatría de Chan Soon-Shiong. "Esta nueva combinación puede servir como un proceso más preciso y motivador para la evaluación de pacientes con accidente cerebrovascular".

Enlaces relacionados:
USC Viterbi  

Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Xenon Light Source
CLV-S400
Exam Table
PF400

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: La rodilla de reemplazo viva se probará en ensayos clínicos dentro de cinco años (Fotografía cortesía de ARPA-H)

Reemplazo vivo de rodilla podría revolucionar tratamiento de osteoartritis

La osteoartritis es la forma de artritis más frecuente, caracterizada por el deterioro progresivo del cartílago o el tejido protector que cubre los extremos de los huesos, lo que provoca... Más

Cuidados de Pacientes

ver canal
Imagen: La solución recientemente lanzada puede transformar la programación del quirófano e impulsar las tasas de utilización  (Fotografía cortesía de Fujitsu)

Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos

Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.